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Abstract This paper reviews some recent algorithms for minimax

and near-minimax approximation and the application of these algorithms
to optiﬁum system modelling and electrical network design. The
philosophy of system modelling is discussed in length, including
various techniques involved in implementing the models. Automated
modelling and design of high-order systems is shown to be feasible,
and the present state of the art in minimax circuit design is

considered in detail.
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INTRODUCTION

Computer-aided design techniques are increasingly being
employed in system designs, and various optimization methods are
now available [1]. Minimax (or Chebyshev) designs are gaining im-
portance, and recently both direct seaich [2] and graéient methods [3]
have been proposed. Least pth objectives for large valﬁes of p [4]
have been formulated to give near-minimax results or a number of
problems [5] using efficient gradient minimization methods [6,7]. A
new gradient algorithm called the grazor search has been developed
and applied to problems of microwave network design [8,9] and system
modeliing [5]. Experience indicates the suitability of choosing
minimax objectives for computer-aided system designs.

In this paper the problem of minimax optimization has been
extended to include constraints invoiving the variable parameters
[10]. Lower-order modelling of high-order systems has been performed
for minimax objectives on the basis of input-output information of the
system using efficient optimization techniques. A generalized objective
function is defined, by means of which it is possible to get model responses
which are optimal from the point of view of transient and steady-state
errors, Suitable constraints can be imposed [11] when required, and
the whole modeling process can be automated and performed on-line
through a small or medium-sized computer., The importance of testing
a proposed or design solution for optimality conditions is also em-

phasized [12,13].
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MINIMAX METHODS

Both direct search and gradient methods exist for solving
the unconstrained minimax optimization problem of minimizing
A .
U(4) = max y. (¢) _ (1)
i iel ~
where I 4 {1,2,...,n} is an index set relating to discrete elements
corresponding to the i, ¢ is a vector of variable parameters, and the Y3
b4 :

are, in general, nonlinear differentiable functions. It is desired

to find a point z such that
A

Uf:) = min max yi(¢) ' (2)
v ¢ iel ~
A

In direct search strategies, the minimax problem has been
explofed using pattern searchw;nd razor search [2,14]. The razor
search method due to Bandler and Macdonald is based on pattern search
[15]. A few random moves are used in an effort to negotiate certain
kinds of '"razor-sharp" valleys in multi-dimensional space. This method
has been used to optimize microwave networks where the objective was
to minimize the maximum deviation of some network response.from an
ideal response specification,

Of the gradient strategies, there are methods involving the
penalty function approach [16], linear programming [3,17], quadratic
programming [18], and a method proposed by Bandler and Lee-Chan [19].

The minimax algorithm due to Osborne and Watson [3] is very similar to



thé one proposed by Ishizaki and Watanabe [17], and deals with minimax
formulations by following two steps - a linear programming part that
provides a given step in the parameter space, followed by a linear
search along the direction of the step. The algorithm works very well
in many problems, but in cases where the linear approximation is not
very gbod in the vicinity of the optimum, the method may fail to
converge toward the optimum for successive iterations.
Whenever efficient methods of finding derivatives are not

available, direct search methods ére useful. For electrical networks
in particular it is now possible to evaluate the derivatives of network
responses with respect to network parameters rather easily using the
adjoint network approach [20,21], and the gradient methods are thus
more suited for such cases., The quadratic prograﬁming methods are
usually more time-consuming than solution of linear p:ogramming problems,
while penalty function methods rely on suitéble function minimization
algorithms,

| NEAR-MINIMAX METHODS

As is well-known to network desiéners, least pth appf;ximation
for sufficiently large values of p can result in an optimal solution
very close to the optimal minimax sdlution [22]. When appropriate error
functions are raised to a power p, the objective function may be ill-
conditioned for values of p greater than or equal to about 10, Bandler
and Charalambous have given a unified approach to the least pth approx-

imation problems, as encountered in network and system deéign, having



upper and lower response specificatioﬁs, e.g., as in filter design
{4,23]. The ill-conditioning is removed by proper scaling; and least pth -
optimization has been carried out for extremely large values ofbp,
typically 103 to 106. This approach has beeh e*tensively used in a
variety of computer-a1ded network design problems [24-26].

The least pth approximation problem can effectively be tackled
by efficient grad1ent minimization techniques such as the Fletcher-Powell
methodb[6], Jacobson-Oksman' algorithm [27], and a moré recent method due
to Fletcher [7]. These methods h;ve been compared critically fof near-
minimax approximation problems in the area of lower-ordér modelling
of high-order systems [5,28]. | |

The problem of minimizing (1) can be reformulated as a least
pth approximation problem as follows [29]. Suppose‘at least one of the

functions yi(¢) is positive. Then, since U(¢4) > O,
" - a

y.(¢)y 1
U = lin U($)( ) ——1—1—&—)1’)1: (3)
p"“‘ iel U(t) T~
where ' } ‘f
0 fory.< O
w, = { — ' (4)
1 fory., >0

Suppose all the functions )&are negative., Then, since U(4) < O,
n

1
y.(¢) p =
U($) = 1im V) C ) (—l—l—ﬁ——) )P (5)
p>-= " iel U(,?,)



where

w, = 1 for all ¥; < 0 : (6)

Therefore, the minimization function is chosen as

‘ w.y.($) q =
£(4) = U)( ] 1) He ¢))
~ o u(e)
- iel ~

where the we are given by (4) or (6), and

u(¢) 1;p<°° for U > 0
R (8)
[u(e)| l<p<e for U< 0

~ -

A
q=

GRAZOR SEARCH METHOD

A new algorithm called the grazor search method has been

developed [8,30] in which gradient information of one or more of the
highest ripplesamong the functions yi(i), iel is used to prgdﬁce a
downhill direction byAsolving a2 suitable linear programming problem.
A linear search follows to‘find the minimum in that direction, and the
procedure is repeated. This type of descent process is repeated with
as many ripples as necessary until a minimax solution is reached to
some desired accuracy.
Let ?i(i), 2el be the largest 1lecal discrete maxima (ripples)
of yi(il, ieI, in descending magnitude, where L 4 {1,2,...,nr}. The grazor

search method consists of solving a linear program at the point ¢J
N



maximize akr+1(2 ) >0 A _ (9)
subject to
j .I\‘. j . :
A7 I ACOREE AR L (10)
: o

2eJ
o >0 i ) (1)
¥ 'ai =1 , - (12)

Led

vhere §£(¢J), feJ are the highest ripples under consideration (kr~<nr),
o -
and J £{1,2,...,k }. Next define
j J ool 4d
A - v 13
o7 = - 1w 00 o (13)
Led

which is normalized to

ady = 867/ ae’ | - (14)
v ~ ~

~~

Starting at ¢J, one or more steps are taken in the direction of A¢g
N N

until an improved point is obtained for a step equal to A¢%. Next,
N
3 %
a method based on golden section search to find the yJ corresponding
to the constrained minimum value of U(gJ + YJA¢°) is used. The jth
N

iteration ends by setting
3 *
o' = g7 4 7 aee (15)
Y N

This method is guaranteed to converge under certain conditions
[8]. The algorithm has been successfully applied to problems of cascaded
lumped LC filter designs, antenna modelling circuit optimization, cascaded

noncommensurate transmission-line network designs, and modelling high-order



control systems [5,28]. The method has been observed to be more reliable
than the Osborne and Watson algorithm, and more efficient than the razor

search method in many circuit design problems [8].
CONSTRAINED MINIMAX OPTIMIZATION

It is now possible to extend the spectrum of minimax
optimization problems to include constraints involving the variable

parameters [10]. Consider the problem of minimizing (1) subject to
£:(4) >0 jeM (16)
Jf\, =

where M 4 {1,2,...,m} and gj are nonlinear function of the parameters in

general. This problem reduces to minimizing ¢k+1 subject to (16) and
br.: - ¥ (8) >0 el 7
R AR e | (17)

The above problem can be reformulated as an unconstrained

-

minimax problem by two methods as follows. —

Formulation 1

The problem can be reformulated [31,32] as minimizing with

respect to 2, ¢k+1 the function

Yotareg) = max Do gs 4y = 0 Um 7100 0y - 05801 (8)
jeM



vhere

A, T |
e [al Ay eee m+1] ‘ (19)

ay >0 §=1,2,...,m¢1 (20)

For a large enough value of z one can obtain, in principle, the éxact
optimal solution for the originél problem by minimizing'this reformulated
objective function,

When impiementing this scheme one can, for the problem defined

earlier, slightly modify the formulation in order to save on computational

effort, so that the minimization function chosen is

1) A . ’
v (‘ts¢k+lag’) = :‘:t [¢k+1: ¢k"'1 - al (¢k"‘1 = yz(‘t)) ’ ¢k"’1 - °j+1gj ('t)] (21)
' jeM

‘Formulation 2

Minimize with respect to ¢ the function
_ : ~ _

~.
W($,w) = max[y, (8), - w.g. ()] (22)
AN jel Y J7) A
jeM
where

A T

: = [wy Wy o] (23)
>0 jeM (24)

w

j

For purposes of practical implementation, as long as U(¢) > O
4"

and one wishes to apply nonzero weights only to violated constraints of
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(16), the minimization function may be chosen as

9 |
W (o,w) = max [¥,(6), - v g (9)] (25)
(AR gelL n J ) A _
jeM
where
L. ¢ J ' T
: = {wl Wo oee wm] 4 , (26)

w' >0 for g.(¢)< O
j Ja
' jeM . (27)

w. =0 for . >0
A gJ(f‘) >

The advantage of this formﬁlation is apparent when U > 0 implies that
certain specifications are violated and U< 0 implies that they are
satisfied. In this case, comparison with violated and satisfied constraiats
seems appropriate.

| By proper choices of the elements of o, w or w', the reformulated

VoA, N
1] ]
functions V, V , W or W can be minimized by choosing a suitable minimax

ES

S~

algorithm, say, the grazor search method. -
INVESTIGATION OF OPTIMALITY CONDITIONS

Once ‘a solution for minimax objectives is obtained, it may
be required to investigate the solution for conditions for minimax
. optimality [33] so as to verify whether the solution is optimal or not.
Consider the problem of minimization of‘(l). If the 92(3), 2eJ are taken
as equal, then for ¢ to satisfy the necessary conditions for a minimax

4

- optimum, there exist u, > 0 for 2eJ such that

L
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I v 79,0 =0 o (28)
2ed ' '
I u=1 | o (29)
LeJ

When testing the optimality conditions afva pdint t, an attempt
is made to solve (28) and (29) for kr =1,2,.., until for a value of |
k;(lf“r) (28) and (29) are satisfied., If this is not.possible the
necessary conditions are not satisfied. |

Though the necessary optimality conditions may seem to be
straightforward to verify, it is both tedious and difficult to implement
in practice. An investigation ﬁas been peiformed [12] and a computer'
program has been developed [13] to test a solution for the necessary
conditions for a minimax optimum by fwo different formulations. One
uses a linear programming approach, and the other the solution of a
set of linear independent equations.

Method 1 N
+1 -

Equations (28) and (29) are solved here by minimizing W2 0
_ T

such that (29) is satisfied and

a3y .

'y .

I 2 u, — | < iek (30)
oy e T e

where K 4 {1, 2, ..., k}. Linear programming ensures that u, > 0 for

L = 1,2,...,kr+1.
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Method 2

Here, a set of independent equations

—==0 iek (31)
i _

and (29) are solved, where K' is a suitable subset of K.

There is no guérantee, however, that u, > 0 for feJ. When
kr-l is greater than the number of elements of K',.the system of
équations (29) and (31) have more unknowns than equations, and Method 1.

is used to get the u 2ed,

!"

MINIMAX SYSTEM MODELLING

System modelling is an area which demands attention primarily
because of the complexity and computational effort involved when considering
the original system, and the introduction 6f judiciously chosen models
can not only redu;e the complexity but also improve the computation time.
A number of papers are now available in the area of system modelling
[34]. Some methods neglecf the modes of the original system which con-
tribute little to the overall response of' the system [35] to obtain
the model. Other methods [36-38] search in some way for the coefficients
of a set of différential or difference equations of 5pecified order,
the response of which is approximated as closely as possible to that of
the system, when both are driven by the same inputs,

The basic problem considered may be stated as that of finding a
transfer function of a given order such that its response is an approx-

imation to the response of the high-order system in some sense. The
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error criterion may be of the least-squares or the minimax type. For
the purpose of this paper, a minimax objective is considered.
In general the transfer function of a given order n may be

written as

m
Y b, si
Hy  (s) = (32)
b4
n
n n-j
s + ) 8.5 S
j=1
where m <n for physical systems. The input is chosen as a unit step
and the error criterion is to minimize the maximum error between the
system and model responses over a specified time-interval [0,T] where
the vector of variable model parameters is given by
¢=1[a,a b, b b 17 (33)
n 071" "n-1 01 """ "m

In this paper

t, is an ith time instant in [0,T] -

cz is the response of the system at ts

vc?(¢) is the response of the approximating model at t,
a

ei(¢) = c?(¢)-cz is the error between the system and the model responses
" N

at ¢,
i
c: is the steady-state value of the system
cz is the steady-state value of the model
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The usual approximation problem that has been considered in
the past [5,34] assumes that cz is fixed at a convenient value (usually
s

¢ or ci at ti=T), so that the objective is to minimize

U9) = max e, (4)] (4
~ 1
tie[O,T]
It may, however, be unacceptable to fix c: at a certain value,
in which case a realistic tradeoff between transient and'steady-state

errors can be achieved.
NEW APPROACHES TO SYSTEM MODELLING

In this section, some new approaches [11] to minimax system
modelling are introduced. The methods suggested make it possible to
~ implement the autcmated modelling of a high-order system on-line.

A Generalized Objective Function

It is possible to apply the ideas of constrained minimax
optimization (discussed in an earlier section) to system modelling so
that a generalized objective function can be defined to take into account

both the transient and steady-state response errors. The following

additional notation is introduced.

S is the upper bound of the system specifications
at steady-state
Sgu is the lower bound of the system specifications

at steady-state
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€ * cn - S, is the error between upper steady-state
specifications and model steady-state value

e, =c -85, is the error between lower system specifications

§ 23 © o0
and model steady-state value

. The problem may now be formulated into two forms as follows:

The first one minimizes with respect to ¢ andv¢k+i
n

v(2’¢k+l’°’°zo’éu~) = ’max. [¢k*1’¢k+1' - a(d’k*l - 'ei(i)l)’
tieIO,T] :
(35)

Phel " %paperPhel * FpwCum]

a _ are positive, If cﬁ is fixed such that e, and - e

where a, s %o Lo e

are positive, the objective function (35) reduces éssentially to U(¢)
: N
in (34).

The second one minimizes with respect to ¢
_ A

VW) = max [les )], - wy e v e ) (36)
t.e[0,T] )
i~ ~
where

=0 for - e£”< 0

¥ow (37)
>0 for - L > 0
=0 for eun< 0

LA { (38)
>0

fore >0
ue - .
If cﬁ is fixed within satisfied specifications the above

objective function reduces to U(¢) in (34).
n

‘In cases where suitable constraints - including parameter constraints

- are imposed, the above procedure may be used to incorporate this in the

objective function. In many cases, it is convenient to choose Spee = Sye
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Automated Lower-order Models

One of the major problems that is encountéred in modelling is
to decide whether a certain lowe:-order model is acceptable'or not, If
the model is too simple so thatvcompﬁting time for optimizing model para-
meters is small, the approximation to the original system may be very bad,
while if the model is complex, then the very'need for system modelling
is lost. If one were to strike a reasonable compromise.between the speed
with which the model is optimized, and the‘accurécy~of the approximation,
it would not be unreasonable to devise a scheme whereby one could increase
the complexity of the model in an automated fashion after a certain number
of iterations or computer time. It is, however, important to keep in mind
the desirability of making this increase in complexity as smooth as possible,
so that the objective function value is not degraded. Thus, either the
number of parameters could be increased for a mpdel with a certain order, .
or the order of the model itself can be incfeased;

% . :
Let H _ denote an optimized model of the form (32). Three
9 ’ -

~

possibilities occur as follows.

(i) Increase in parameters only

&*
Hm,n(s) > Hm+p,n(s)
Here bm+p’ bm+p;1’ ceos bm_'_1 are initially assumed to be
&
zero so that H = H in the first iteration.
m+p,n m,n

(ii) Increase in order

&*
Ho,n(8) > Finag,neq ()

Here q poles of Hm+q,n+q(s) are assumed to cancel with q zeroes initially,
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: - .
so that H5+q,n+q = Hm,n in the first iteration, In this case, initial

guesses for q poles (or zeroes) are necessary.

(iii) Increase in order and parameters

L
Hon () 2 Hppig,neq®

Here b eess b are assumed to be zero initiallyband that there

m+q+p’

is a cancellation of q zeroes and q poles at start, so that Hm+p#q,n+q = Hm,n

m+q+1
*

in the first iteration.

A careful choice of initial parameters can make the increase in
model complexity smooth so that the whole modelling procedure can be
automated on a small digital computer on-line,

Optimality Conditions

When a certain low-order model is being optimized, it may be
useful to investigate intermediate or final solutions after a certain number
of iterations of the modelling algorithm,'or after a certain convergence
criterion is reached, so that one may deéide whether to carry on with further
optimization, to increase the order of the model, of\to terminate altogether.
For minimax objectives, it is possible to test-thg optimality by the procedure

outlined in an earlier section [12,13].

CONELUSIONS
The new ideas presented in this paper have been verified and used
in computer-aided design of a variety of electrical networks subject to
different objectives and varied constraint specifications. Filters can
now easily be designed to meet upper and lower response specifications at
predetermined frequencies, within reasonable computing time and desired accuracy.

The choice of a circuit model and objective function are as important as the
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choice of a reliable and efficient optimization technique to give optimal
model parameters. If suitable optimization techniques or modelling |
procedures do not exist for a particular system, the designer is confronted
with the task of improving the modelling technique and developing an
efficient algorithm to evolve a realistic design. This involves a great
deal of experience about the system and an expertise in the state of art

methods of computer-aided design,
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